
A Process for Verifying and Validating Requirements for Fault Tolerant Systems

using Model Checking1

Francis Schneider2, Steve M. Easterbrook, John R. Callahan and Gerard J. Holzmann3
William K. Reinholtz2, Adins, Ko2, Mohammad Shahabuddin2

NASA/WVU Software Research Lab
100 University Drive, Fairmont, West Virginia 26505

Abstract
Model checking is shown to be an effective

tool in validating the behavior of a fault tolerant
embedded spacecrafi controllel: The case study
presented here shows that by judiciously abstract-
ing away extraneous complexity, the state space of
the model could be exhaustively searched allowing
critical functional requirements to be validated
down to the design level. Abstracting away detail
not germane to the problem of interest leaves by
definition a partial specification behind. The suc-
cess of this procedure shows that it is feasible to
effectively validate a partial Specification with this
technique. Three anomalies were found in the sys-
tem. One was an error in the detailed require-
ments, and the other two were missing/ambiguous
requirements. Because the method allows valida-
tion of partial specifications, it is also an effective
approach for maintaining fidelity between a co-
evolving specification and an implementation. We
also show that two of the three anomalies were
found in the implementation, demonstrating the
overall effectiveness of the process and the im-
portance of a good software design.

The research described in this paper was carried out in part
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration, and in part by West Virginia Uni-
versity under NASA cooperative agreement #NCC 2-979. Ref-
erence herein to any specific commercial product, process, or
service by trade, name, trademark, manufacturer, or other-
wise, does not constitute or imply its endorsement by the
United States Government, the Jet Propulsion Laboratory,
California Institute of Technology or West Virginia University

Jet Propulsion Laboratory I California Institute of Technol-
om,
MS 125-233 Pasadena, CA 91109.

Computing Sciences Research, Bell Laboratories, Lucent
Technologies, Murray Hill, NJ 07974

1 Introduction
This paper describes a practical application of

model checking for validating the requirements for
a complex embedded system. The case study de-
scribed here is of a dually redundant spacecraft
controller, in which a checkpoint and rollback
scheme is used to provide fault tolerance during
the execution of critical control sequences. The
challenge given to us and the purpose of this study
was to determine if model checking could be used
to uncover errors in an existing design specifica-
tion for a space craft system. To this end the proj-
ect manager supplied us with such a specification.

The software requirements specification for
the spacecraft specifies the required behavior for
the checkpoint and rollback scheme. However, the
validity of these requirements could not be deter-
mined through inspection. In other words, it was
not possible to determine whether the behavior
described in these requirements would provide the
desired level of fault tolerance. More importantly,
testing of the eventual implementation would not
necessarily provide this validation either, due to
the difficulty of ensuring test case coverage for all
possible fault occurrence scenarios.

The approach described here uses a formal
automata-based model derived from the specifica-
tion. We used various high-level safety properties
to validate the generalized system model. Key
system functional requirements were then vali-
dated by defining corresponding liveness proper-
ties in linear temporal logic, which were required
to be satisfied when the system responds to errors.
We used the model checker Spin [2] to identify
traces in the model for which these properties were
violated.

The work described in this paper forms part of
an on-going investigation into lightweight formal

- 1 -

methods for V&V of requirements specifications.
We use the term ‘lightweight’ to indicate that the
methods can be used to perform partial analysis on
partial specifications, without a commitment to
developing and baselining complete, consistent
formal specifications. The formal methods are
used to model critical chunks of an informal speci-
fication, to check that key properties hold. The aim
is to find errors, rather than to prove correctness.
Application of the methods is driven by the .needs
of the project, and is used as a modeling tool to
answer questions that arise during verification and
validation.

The paper is organized as follows. Section 2
provides a motivation for the case study by briefly
surveying existing approaches to requirements
validation and demonstrating why these ap-
proaches do not provide the desired level of assur-
ance. We introduce the distinction between
verifying requirements through completeness and
consistency checking, and validating requirements
against real world properties (‘claims’) that should
follow if the statement of the requirements is cor-
rect.

Section 3 introduces the dually redundant sys-
tem, and shows how it was expressed as a FSM.
We show how the system behaves as a communi-
cations system, making it particularly amenable to
analysis using the model checker Spin.

Section 4 describes the steps that were taken to
optimize the model, in order to reduce the size of
the state space. We show how the model was par-
titioned into five separate fault scenarios, and ex-
plain in detail how one of these scenarios was
checked. We discuss the process of checking the
model against claims expressed as linear temporal
logic formulae. Section 5 presents the results of the
analysis.

Section 6 provides a discussion of the results,
including a reflection on the benefits seen in the
case study. The importance of partitioning the
model in order to make the analysis feasible is dis-
cussed, along with some reflection on the resulting
limitation of the analysis (‘partial analysis of par-
tial specifications’).

Section 7 presents conclusions and describes
our future work. A short overview of the theoreti-
cal basis for the use of the LTL and Buchi auto-
mata is provided in appendix A.

2 Background
Requirements validation is the process of de-

termining that the specified requirements capture
the real world needs of the stakeholders. For real-
time control systems, this involves checking that
the specified behavior will in fact provide safe and
effective control, without introducing any undesir-
able effects. For reasonably complex systems, va-
lidity of the requirements is hard to establish.
Informal methods only provide a very basic level
of assurance, by imposing a structure on the speci-
fication that facilitates inspection by domain ex-
perts. Formal methods have the potential to
provide a much greater level of assurance, through
the construction of a precise model of the require-
ments, which can be tested against domain proper-
ties.

A number of formal modeling tools are avail-
able that are applicable to software systems. Heit-
meyer and Mandrioli [3] provide an excellent
overview of the current state of the art. Here we
concentrate on state machine models, which can be
used to test safety and liveness properties.

RSML [1, 31 and SCR [5] have both been very
successful at providing static analysis techniques
for checking completeness and consistency of
specifications expressed as deterministic state ma-
chines. However, fault tolerant systems are inher-
ently non-deterministic, that is, the transition
schemes are relational not functional. Systems
with inherent non-determinism are not easily ame-
nable to analytic static evaluation methods. Sys-
tems that can be partitioned into a deterministic
and a non-deterministic part can apply tools such
as RSML or SCR to validate deterministic compo-
nents. For example, Easterbrook [6] has reported
using the SCR tool in this way to validate the Fault
Detection, Isolation and Recovery (FDIR) re-
quirements for a spacecraft bus controller. The
deterministic part was modeled in SCR, and then
extended to include non-deterministic elements
(i.e. fault occurrences) using the Spin model
checker [2]. Such a procedure would be suggested
for example when an otherwise deterministic sys-
tem had to be shown to be resilient under (non-
deterministic) fault injection.

An analysis based methodology such as RSML
or SCR requires determinism in the underlying
model to prove requirements completeness and

- 2 -

consistency. In contrast, state space exploration
methods (‘model checking’) are operational in na-
ture rather than analytic. They allow functional
requirements to be validated over non-
deterministic finite state machines using optimized
reachability schemes. By incorporating functional
requirements in a non-deterministic model, re-
quirements properties can be validated. Manna and
Pneuli [6] have shown that virtually any expressi-
ble requirements property can be represented as a
safety, precedence, or liveness property using the
Linear Temporal Logic (see appendix A).

Three such model checkers have been widely
used for verification of low-level designs of both
hardware and software, and communication proto-
cols. The Murphi model checker has a rich support
for temporal logic and allows invariants to be ex-
pressed in the model to be checked as the state
space exploration evolves. It supports a single site
model only, which is a disadvantage in the valida-
tion of concurrent systems. The Symbolic Model
Verifier (SMV) has been applied successfully to
communication protocols [8]. SMV can validate
synchronous and asynchronous systems against a
system specification specified in the temporal logic
CTL [lo] [2]. It allows for non-determinism in the
specifications and for concurrency in the model
within procedures. It supports rich temporal logic
specifications but does not support complex data
structures, making it difficult to build a complete

Tool

RSML

SCR

Murphi

SMV

Spin

Table 1:

Deter- Counter
minis- Exam-

tic? Ple
Genera-

tion?

Y I N

N Y

I

N l y
N I Y

Reqts.
expressi-

ble as
LTL

Formu-
lae?

N

N

Y

Y

Y

Devel-
oped for
V&V of:

TCAS
S I W
A7e Air-
craft S I W
Single
Process
S I W
comms
ww
comms
S I W

low level model. Both SMV and Murphi were de-
signed for validating hardware systems. The Spin
model checker was designed for verification of
communication protocols, and provides support for
a basic set of software data structures.

Each of the three model checkers permits a
rich set of temporal logic formulae to be incorpo-
rated into the modeling system. We chose to use
the Spin model checking system for this study be-
cause it (a) was designed to validate software
communications protocols (a) is algorithmic in
nature (c) supports data structures allowing detail
where appropriate (d) incorporates linear temporal
logic primitives allowing functional requirements
to be validated over the model (e) and, signifi-
cantly, because the modeling system can be used to
validate functional requirements over traces from
the implementation.
3 DRS High Level Model Description

The case study described here is a Dually Re-
dundant System (DRS) for a spacecraft controller,
consisting of two hardware platforms running
identical software to maximize system reliability
and availability. The systems exchange information
to synchronize software operation. One of the sys-
tems has control of the system bus and is called the
prime string. The other, known as the online
string, provides a backup, executing in synchroni-
zation or at most within one second of the prime
string. Information is exchanged between the two
systems by the synchronous (rendezvous) commu-
nication of a 32-word table, the State Table Broad-
cast (STB), broadcast by the prime string once per
second. The online string uses this to keep itself in
synchronization with the prime string.

The system executes high priority programs
called critical sequences that must be tolerant of
arbitrary faults. To this end, the strings use a vari-
ant of the checkpoint and rollback process found to
work well in industrial applications [ll]. Check-
points correspond to completed transactions in the
executable code. Such a completion is referred to
as a commit operation, meaning that if a system
crash occurs, system operations could be rolled
back to the point where the commit occurred and
proceed from here. The spacecraft controller works
analogously except that the checkpoints are re-
ferred to as markpoints, and are hard coded into
the executing program.

- 3 -

For example, consider the retrieval and return Meaning Value Flag
of a soil sample by a remote robot, Successful re-

which would be another markpoint. If any opera-
CS inactive and not sus- 0 of the sample that was just retrieved, at the end of
CS active or suspended 1 CM The next group of instructions might be the storage
CS not executing 0 this process would be delineated with a markpoint.
CS executing 1 cs be repeated. The code ending in the completion of
Cleared 0 trieval of the sample is an operation that need not
Fault 1 SFFJ

pended
tion were interrupted by the occurrence of a fault, Table 2: Communication Flags
the system would repair the fault; roll back control
to the beginning of the last markpoint; and con- fined a communications protocol as a five compo-
tinue execution from there. It would not be neces- nent specification for how communication is to be
sary to waste battery power or time to retrieve carried out in an error free way among two or more
another sample if that was already achieved. This separate elements. For the mark and rollback proc-
paper focuses on the validation of the fault toler- ess, these properties are:
ance provided by this mark and rollback process. 1. The service provided by the protocol is to keep

The fault containment requirements specify the prime and the online systems in synchroni-
that fault protection shall operate only in the prime zation. This is done so that the online string
string. While the prime string is repairing a fault, can take over quickly should the prime system
the online string must stop executing its copy of become inoperable.
the critical sequence and wait for the STB to tell it 2. The environmental assumptions are that the
that the fault has been repaired, thereby signaling it prime string interacts with an entity that pro-
to proceed with the critical sequence. vides information about faults.

The rollback requirements specify that three 3. The major vocabulary consists of the variables
full seconds of execution time shall be allowed to SFP, CS, and CM. SFP is the Spacecraft Fault
pass after a new markpoint is encountered by the Protection flag. When this flag is set, the sys-
software before the new markpoint is recognized tem has experienced a fault that has not yet
as a legitimate rollback point. This is because the been repaired. The CS flag is set in the prime
system controls external elements that are mostly string and in the backup string when the criti-
mechanical in nature. Accordingly, the software is, cal sequence is active i.e. running in each re-
in general, always ahead of the hardware. The spective string. The CM flag is set to indicate
three-second delay gives any mechanical tasks a that the critical sequence is active or in
chance to be completed, and for any faults that standby pending the repair of a fault and ac-
occurred to be properly logged, before the previous cordingly to remind the strings that when an
section of the critical sequence can be considered interfering fault is fixed, the suspended critical
successfully complete. To implement this require- sequence needs to be restarted at the last valid
ment, each new markpoint is aged each second by aged markpoint.
one second by moving it one level deeper in a 4. The three protocol flags each use single bit
three-level buffer. Only markpoints that have encoding, as shown in Table 2.
reached the bottom will be eligible for use in the 5 . The procedure rules are most complex to deal
rollback process. Figure 1 shows a high level snap- with, the hardest to specify, the most difficult
shot of normal critical sequence operation in both to validate. Most of the validation work occurs
strings. here. Examples from the mark and rollback
4 Validation Procedure support application are that the protocol vari-
4.1 Modeling ables SFP, CM, and CS are to be broadcast

The first step was to produce a state model of once each second to the online string and actu-
the DRS system. To model the specified behavior, ally also back to the prime string by the prime
we treated the mark and rollback process as a string to allow the prime string to check its
communications system. Holzmann [12] has de- own synchronization.

- 4 -

The initial model was represented using state-
charts [13]. Figures 1 and 2 show portions of the
statecharts for the prime and online strings respec-
tively.

In the case study presented here, certain types
of faults are of such a nature that they can be re-
paired by the prime string. When a fault occurs,
the three protocol flags (CS, CM, SFP) change
state from (1, 1, 0) to (0, 1, 1). This information is
broadcast to the online string once per second.
When the online string sees the SFP flag is set, it
suspends operation of the executing critical se-
quence and waits for the prime string to repair the
fault. Once the fault is repaired, the prime string
can roll back to the last valid markpoint and re-
sume processing. The online string will see the
new SFP flag is reset in the STB message, rollback
to the aged broadcast markpoint and restart its
copy of the critical sequence.

This example shows a small subset of the ac-
tual elements and their procedure rules,that belong
in each category. The complete protocol specifica-
tion is in excess of 80 pages.
4.2 Estimation of State Space Size

Once an initial model is obtained, the state
space size must be estimated, in order to assess the
potential for automated validation. This was done
by estimating the number of substates needed in
the Spin model to implement each state shown on

+c online

PRIME’

suspend tl -
PRIME NOMINAL

v

Figure 1: A partial statechart for the DRS
prime string

the statecharts. For example, the full statechart for
the prime string has 16 states and each could be
implemented with, say, 4 substates giving a state
space of 4 x 4 x ... x 4 = 232.

The full statechart for the online string has 14
states. Assuming 4 substates for each gives 4 X 4 X

... x 4 = 228 states. The rendezvous communica-
tion contains 32 data elements, 5 of which are un-
used leaving a total of 27 elements. Each of these
remaining 27 is at least a binary flag. This gives 2
x 2 x 2 . .. x 2 = 227 states as a minimum. This
contributes to the state space of the online string,
giving 228 x 227 = 255 states total.

Both strings operating as one system will have
a state space of

(232 states prime string) x (255 states online
string) = 287 states.

With a CPU that executes 1 state per micro-
second, the system will traverse its reachability
graph in about 10l2 years.

The problem of interest here is to discover the
failure modes of this system. To be able to do this
we must reduce the state space down to an man-
ageable size by abstracting away states that are not
germane to the operation we are interested in,
namely (a) the repair of faults (b) the rollback pro-
cess and (c) the synchronization between the prime
and the online (backup) systems. The result is a

Q Online init

I
Y

ONLINE NOMINAL

. (SEQUBCE IDLE 7
Power-up Fault

I I k e s m e \ SFP

I Y SEQUENCE CRITICAL

ONLINE

Figure 2: A partial statechart for the DRS on-
line string

- 5 -

partial specification, but which has enough detail
left to partially validate the properties of interest.
4.3 Reducing the state space

There are a number of ways in which the state
space can be reduced to a size amenable to model
checking. Firstly, the functional requirements of
the system may be partitioned into equivalence
classes, by exploiting natural symmetries or sub-
classes that may be present in the domain. Sec-
ondly, the validation task can be partitioned by
separately validating requirements that are known
to be independent from one another. Validation of
each requirement in isolation should traverse less
of the overall state space than all of the require-
ments taken together. In either case, detail that is
not germane to each validation task can be tempo-
rarily removed from the model. We will illustrate
each of these approaches below.

For the DRS system, we partitioned the func-
tional behavior by separating out the classes of
fault that can occur. The requirements include a
simplifying assumption that facilitated this parti-
tioning:

Fault protection shall be designed assum-
ing only one fault occurs at a time, and
that a subsequent fault will occur no ear-
lier than the response completion time for
the first fault, and that multiple detections
occurring within the response time are
symptoms of the original fault.
The requirements identify 5 classes of faults

that can occur on the spacecraft. Accordingly, the
Mark and Rollback process can be partitioned into
five equivalence classes. Each can be treated inde-
pendently of the others, significantly reducing the
size of the overall state space to be checked by the
validation process. We also exploited the symme-
try between the redundant processors running the
online and the prime strings, by recognizing that
either string could run on either processor.

1. SFF Execution Non-UV Trip
2. Online Fault
3. Peripheral Interfering Fault
4. Prime Fault
5. SFP Under-Voltage Trip

In the first three cases, the Prime String will
handle the fault, while both strings suspend execu-
tion of the critical sequence. In case 4, the fault is

The five fault classes are as follows:

in the prime string, and the online string will take
over. The online string then becomes prime. In the
final case, the fault could be anywhere, so either
processor may end up as prime. In all cases, once
the fault protection response is complete, the criti-
cal sequence should be resumed from the last aged
markpoint, by whichever processor is now prime.

Equivalence class 1 contains the fundamental
mark and rollback scenario common to the other
classes during normal operation and it has less
structure, in that it executes the smallest subset of
states in the 5 partitions considered above. We
therefore used this as the first validation exercise.
We will concentrate only on this class for the re-
mainder of the paper. It will be seen that validation
of this class has implications for the other re-
quirements classes as well. We proceed first by
removing all states in the statecharts that do not
contribute to the mark and rollback process. The
resulting states are, in fact, those shown in figures
1 and 2.

The prime string now contains 7 states and the
online string 5 states. If we assume once again that
as a minimum again each state can be implemented
with 4 substates, then these two elements contrib-
ute

47 x 45 = 16,777,216 states.
The overall state space can be further reduced

by ignoring the CM and CS flags. By abstracting
these two flags away we will be checking only the
fundamental mark and rollback process that de-
pends upon the SFP flag and the relative position
of the markpoint with respect to critical sequence
execution time. If we want to learn about any pos-
sible effects of the CS and the CM flags they will
have to be inserted back into the model at some
point. If the state space becomes too large, a non-
exhaustive search option would then have to be
used.

A further strategy for reducing the state space
is to reduce the complexity of the input data. The
model can be validated on the simplest possible
test runs, and then if no errors are uncovered, the
size of the dataset can be increased gradually. In
this case, the length of the critical sequence can be
considered input data. A minimal critical sequence
would contain the smallest number of markpoints
possible. A critical sequence containing 3 mark-
points was chosen for the initial exercise, as it

- 6 -

contained sufficient complexity to determine all
possible combinations of fault occurrence and
rollback.

Finally, by removing the states that are not
executed in fault class 1, the state space was re-
duced to an estimated:

(4 prime)4 x (3 x 2 rendezvous packet) x (4
online)3 = 98,304 states

Now adding an extra flag for the presence of a
fault doubles this to 196,608 states. This is still a
manageable state space for the Spin tool.
4.4 Validation of Case 1

A SFP Execution Non-UV Trip is a spacecraft
fault that is outside of the DRS system per se.
These correspond to the type covered by partition
1 in this case study. In this case the prime string is
given the task of repairing the fault. The prime
string would set the SFP flag to 1 to indicate a fault
operation is in progress; stop the running critical
sequence; and enter the SFP Active state to repair
the fault (see Figure 1). The STB would still be
transmitted to the online string once per second.
That is, since the fault is outside of the prime
string, its ability to function has not been impaired.
Having received the STB, the online string will
cease running its copy of the critical sequence and
transition to the Fault Idle state, waiting there until
it receives an STB message indicating that the fault
has been cleared. Once the prime string has re-
paired the fault it sets its SFP flag to zero and en-
ters the Fault Idle state in preparation for resuming
the critical sequence. At this point it rolls back to
the last valid (aged) markpoint; and resumes exe-
cuting its copy of the critical sequence at this loca-
tion. When the online string sees an STB message
indicating that the SFP flag is 0, it enters the
SEQUENCE CRITICAL state resuming execution
of its copy of the critical sequence at the aged
broadcast markpoint.

The first step in the validation is to develop
Linear Temporal Formulae representing the re-
quirements to be validated. Each LTL formula is
then incorporated into the resulting Spin model as
a "never" clause. Details of the validation method
are described in Appendix A.

To check that the desired fault tolerance is
achieved, three separate functional requirements
need to be validated in each string:

R1. If a fault occurs when the last markpoint was
at the start of the program, the prime string
shall roll back to the start regardless of how
much time has expired since the program
started running.

R2. If a fault occurs when the time t following the
last markpoint was less than 3 seconds and the
last markpoint was not at the start of the pro-
gram, the prime string shall roll back to the
next previous markpoint. That is, do not use
the markpoint that has not yet been properly
aged, even though it has been encountered in
the execution of the current critical sequence.

R3. If a fault occurs when the time t following the
last markpoint was greater than or equal to 3
seconds the prime string shall roll back to the
last valid aged markpoint.
Requirements R4, R5, and R6 express the

same three requirements for the online string.
These can all be expressed as liveness conditions;
they specify an action that must take place now or
in the future. Symbolically, the LTL formulae rep-
resenting these conditions have the form:

OPA Wp-,Oq)
Where p is the occurrence of a fault, and q is

the correct response. 0 and 0 are the temporal
logic operators 'eventually' and 'always'. Ox
means at some future state x will be true. Ux
means the x is true in the current state and in all
future states. The formula expresses the condition
that eventually a fault (p) does occur, and that it is
always true that when it occurs, at some point in
the future the correct rollback operation (4) will
occur.

Note that strictly speaking, our validation of
the requirements only involves the latter part of
this formula, i.e. O(p + 0 q), as we are checking
that the correct rollback eventually occurs in re-
sponse to a fault. However, this is trivially true if
no faults ever occur (i.e. if p is never true). Hence
we add the condition Op to check that our fault in-
jection model does indeed inject this type of fault.
This removes the possibility of false positives
during the validation exercise.

The LTL equivalent of requirement R l is as
follows:

OPA O(p+Oq) (R1)
where p = (SFP = l)A(markpoint = start)

- 7 -

and q = (PC = markpoint)r\(SFP = 0)
Where markpoint is the default markpoint ad-

dress of the beginning of the sequence; PC is the
critical sequence machine program counter; and
start is the address of the beginning of the critical
sequence program. Note that requirement R1 said
nothing about how quickly the rollback should oc-
cur, and neither does our formalization, as we have
not said anything about the intervening states be-
tween the fault, p, and the rollback, q. We could
define further temporal formulae to investigate
such concerns at a later stage in the analysis.

Requirement R2 becomes:
OrA O(r+Os) (R2)

where r = (t < ~)A(SFP = l)A(mp-current # start)
and s = (PC = mp-next-previous)A(SFP = 0)

and R3 becomes:
O U A U(U+oV) (R3)

where U=

(t>3)~(SFP=1)~(mp_current=mp_ge_three_sec)
and v = (PC = mp-current)A(SFP = 0)

Where t is time in seconds since the last en-
countered markpoint; here mp-current represents
the current markpoint and mp-previous represents
the markpoint preceding mp-current; each of these
represents the case where less than three seconds
have expired. mp_ge-three-sec represents the
markpoint for the case where three or more sec-
onds have expired since the last encounter of a
markpoint in the sequence.

Three analogous requirements are needed for
the online string, using its copies of SFP and Mark:

Oh/\ O(h+Oi) (R4)
o j A U (i + o k) (R5)
0 1 ~ o(l+Om) (R6)

Each additional LTL formula that is added to
the model adds more complexity, making runtimes
and memory consumption very large. The best way
to circumvent this problem is to validate each
functional requirement separately. For example, we
can check that requirement Rl is satisfied without
looking at R2 and R3 because they are independent
requirements. However, requirement R1 is not in-
dependent of R4. This non-orthogonality requires
that both be validated in the same run. Semanti-
cally, this means that when rollback takes place in
the prime string under the condition that we are at
the start of the program, then the same rollback

must be also shown to take place in the online
string. The derivation in Appendix A shows that a
jointly operational Buchi Automaton can be pro-
duced from separate LTL formula by writing down
the logical conjunction of the formulae and then
converting the result to an equivalent automaton.
The conversion itself is done with the Spin option -
f and is automatic, although the user may want to
apply a certain amount of optimization on the re-
sult to make the resulting automaton more effi-
cient. To keep the resulting system at a minimum,
the automaton for rollback to the beginning of the
program is derived from R1 and R4:

o p ~ O(p+Oq)AOhA O(h+Oi) (R7)
where p, q, h and i are as defined above.
Analogous minimal LTL formulae were de-

rived for the other 3 cases and they were imple-
mented in the model.

Additional validation can be performed by de-
fining further properties that should hold in the
model. For example, we could check that aged
markpoints are always in agreement with each
other. This condition can be stated by using the
safety condition that the aged markpoint x in the
prime string never disagree with the aged broad-
cast markpoint y in the online string. The corre-
sponding safety condition would be

U(x = y) (R8)
Additionally, assertions were used throughout

the model to confirm that the model had the de-
sired behavior.
5 Results

Five different fault categories were identified
to test the model. The results reported here cover
the first of these categories only (partition l), but
we do discuss implications for the other five fault
categories. Fault category 1 refers to the behavior
of the DRS prime string in the face of a SFP Exe-
cution Non-UV Trip.

Six separate requirements on the rollback
scheme were validated, as described in section 4.4.
Each of the six requirements involved exhaustive
examination of approximately 100,000 states in the
model, and took about 30 seconds each. The re-
sponse and recovery in each case was to the injec-
tion of a non-UV trip fault in all possible ways,
based on the model. Three of the 6 runs for the 6
requirements failed in the verification.

- 8 -

We define a fault as an element in a system
that that doesn’t perform to specifications. An
anomaly is incorrect information appearing in the
system that is the manifestation of the fault. Three
anomalies were identified and are described below.
The first two are errors in the requirements that we
thought might not occur in the DRS implementa-
tion. The third was a discrepancy in the detailed
requirements that could allow for erroneous be-
havior of the implemented system.

1. Depending on how error detection and repair is
handled, it may be possible for the prime sys-
tem to detect and to repair an intermittent error
within one second, and then consequently not
broadcast this state to the online system. This
would mean that the online system would not
receive notice of the fault; therefore, it would
continue executing its copy of the critical se-
quence. Repeated occurrence of this scenario
would cause the online system to get ahead of
the prime system, possibly to the point where
the online system would complete its copy of
the sequence. If the prime system subsequently
fails, the online system may not have a mark-
point to roll back to. Details are as follows.
The synchronization between the prime and
online systems is at one-second boundaries.
The STB handshake in interrupt five will not
report the occurrence of a fault that occurred
after the beginning of the one-second time
frame. However, if the fault is repaired before
the start of the next one-second time frame, the
prime string will not report it in the STB at the
next handshake either. The result is that the
online system is now one second ahead of the
prime system. Figure 3 shows one sequence of
events in this scenario. Inspection of the figure
shows that repeated injection of this type of
intermittent fault effectively stalls the prime
execution while the online system will eventu-
ally complete executing its copy of the se-
quence. This anomaly is due entirely to the
ordering of processing described in the design.
Figure 3 shows a detailed example of how this
condition could develop after the detection and
repair of a single fault in the prime string. The
three aging buffers in the prime string and the
two buffers in the online string show a new

mark point (location 6) having been aged by
one second when the fast-fault-repair scenario
occurs in the prime system. The correct roll-
back point is that given for the prime string
since it controls the space craft bus. It is shown
as location 1 at the bottom of the prime aging
buffer. The anomaly or resulting incorrect in-
formation in the system is the mark point
identified as location 6 at the bottom of the
online aging buffer.

pQPrime]
Fault occurs in pr im
and is repaired in same
second. Prime freezes

PC aging for that second;
Online does not stop
executing since STB
value it picks up at the
end of the second is

-FPresettoo

PC

I I Prime Failure here
would cause Online to -

I bcmk= 6 SFP = 0 - tutuwxecntionpnint
rnllback to an invalid

pwl Note thapcin Online
is also ahead of the
primepcat this point Online Aging

Prime
Buffer Buffer Aging

Figure 3: Anomaly One

2. The second anomaly depends upon how faults
are handled at the end of a critical sequence. If
a fault occurs in the prime system less than
three seconds after the end of the critical se-
quence is reached, it is not clear how the roll-
back, if any, would be handled. The
requirements specification did not designate
the critical sequence end instruction as a
markpoint. Our validation run failed because
our model assumed that once the critical se-
quence completed, the online system returned
to the Power Up Idle state; accordingly there
would be no suspended critical sequence to
return to once the fault was corrected. If the
fault were to bring the prime system down, the

- 9 -

online system may need to roll back to the last
aged markpoint. This anomaly is due to a
missing requirement. Figure 4 shows a detailed
example of how this condition could evolve.
Both the aging buffers would have had time to
develop correct rollback points shown as loca-
tion 9 in both cases. However, the time se-
quence following the dashed line indicates that
each critical sequence would have finished
execution, therefore neither critical sequence
would be available for follow-on rollback after
fault repair. In each case both critical se-
quences terminated and transitioned out of
their execution state. In this instance the
anomaly or incorrect information in the system
is 1oss.of the critical sequence itself and its as-
sociated program counters and aging buffers.

3. The third anomaly concerns the occurrence of
a fault 2 seconds after a markpoint is encoun-
tered in the prime string. The prime system
freezes the aging function at n+2 seconds.
Since faults that occurred in the previous sec-
ond are not broadcast to the online system un-
til the current second, the online system will
continue to execute, aging its markpoint by
one further second. At this point the online
system receives the SFP = 1 value and now
both agers are frozen. Once the fault is re-
paired, the both strings will roll back, but the
online system will roll back to the newer
markpoint. This would not cause a problem if
the prime system then completes the critical

sequence. However, if the online system
should subsequently have to take over due to a
prime failure - possibly associated with the
(symptomatic) fault that was just processed, it
could roll to an inappropriate block of code.
This problem would not go away if the aging
buffers were made deeper or shallower. It
would just occur at a different place since it is
a consequence of the relative time difference
between the two aging schemes. Figure 4
shows a detailed example of how this condi-
tion could develop. ' It shows a fault occur-
rence that freezes the prime ager with mark
point 6 at the 2-second point. Subsequently the
corresponding online string ager ages its 6 by
one extra second before receiving the STB
message informing it of the occurrence of the
prime fault. Accordingly, the anomaly or in-
correct information in the system resulting
from this fault is that the 6 has made it to the
bottom of the online string aging buffer yield-
ing an invalid rollback point. The correct roll-
back point is to location 1, the start of the
critical sequence.

6 Validation of the Implementation

We have subsequently validated the implementa-
tion for the presence of the three design anomalies.

- 10-

For this purpose we used a special purpose space-
craft simulator called the High Speed Simulator
(HSS) [16,17]. The simulator uses code identical’
to the real spacecraft. However, it is decoupled
from hardware and telemetry. Accordingly, its use
as a test vehicle (1) is an accurate measure of sys-
tem functionality and (2) it allows rapid turn-
around on test suite creation, execution, and
reporting of results.

The simulator allows test engineers to write test
sequences for execution on the simulator. Given
the data structures present in the spacecraft con-
troller, a Tool command language (Tcl) program is
written that orchestrates (1) the execution of the
test sequence, (2) the extraction and printing of
values of selected data attributes (3) the extraction
and printing of any relevant time stamps and (4)
fault injection scenarios and their responces.

6.1 Validation of the Implementation

The context here uses the term “prime system
fault” to mean the prime system is responding to
and repairing a fault that occurred in another part
of the spacecraft. Additionally, the prime system
must repair the fault before the sequence can be
continued.

6.2 Procedural Steps

We wanted to know if the software implementation
contained the same anomalies as were found in the
design. To determine this, we supplied the High
Speed Simulator with a simple sequence program
for execution. By injecting faults into the running
sequence, the same problematic conditions would
be set up in the implementation that were discov-
ered by design validation. Our earlier validation
work derived the design anomalies from a three-
step process. First, the prime system would stop
running freezing its mark point ager in response to
a fault occurrence somewhere in the spacecraft.
Second, the prime system would load and begin

execution of a fault recovery program. Finally,
during its execution of the fault recovery program,
the prime system itself would fail. To affect this
same scenarjo in the software implementation, the
prime system was commanded to do a cold boot at
execution points in the implementation identical to
those that caused the anomalies in the design vali-
dation. An operational online system considers the
prime system cold boot to be a prime system fail-
ure. It reacts by becoming prime itself; taking con-
trol of the spacecraft bus; rolling back to the
relevant earlier mark point address if necessary;
and resuming execution of the sequence program.
For example, the third anomaly found in the design
validation process occurs when the prime system
fails after encountering a fault scenario that freezes
its mark point at second two in the aging process.
This results in the new prime system rolling back
to an inappropriate address due to a timing prob-
lem in the design. Accordingly, cold booting the
prime system when it has aged its mark point by
two seconds has the same effect as the two step
process considered in the design case.

Detection of the presence of design anomalies in
the implementation was done by selecting data
structures for output identical to those used in the
design case. These output data values taken to-
gether at any execution cycle represent the state of
the implementation at a particular point in time. As
the implementation executes, this ‘state vector’ de-
scribes a finite state machine that represents the
implementation. This finite state machine is an
abstracted finite state machine since it doesn’t in-
clude all variables, only the ones considered rele-
vant to the current validation. If a corresponding
design anomaly is itself present in the implemen-
tation, the implementations’ abstracted state vector
will go through an equivalent sequence to that
found in the design validation done earlier. In this
case the work proceeded by outputting each state
vector for the executing implementation. The out-
put list was then manually examined line by line to
look for the presence of anomaly states.

The input sequence program that was incorporated
into the HSS Tcl interface program to check for the
presence of anomalies in the implementation is
shown in Figure 6.

- 11 -

IP
800
803
805
807
809
8Ob
80d
80f
81 1
813
815
817
819
81b
81d
81f
821
823
825

Mnemonic
BEGIN
NOP
NOP
NOP
NOP
NOP
MARK
NOP
NOP
NOP
NOP
NOP
MARK
NOP
NOP
NOP
NOP
NOP
END

Figure 6 Sequence Validation Sequence

To keep the analysis as straight forward as possi-
ble, each instruction was executed on one-second
boundaries. A HSS Tcl interface program was
written to generate the output state vector sequence
of the abstracted implementation state machine.
Schematically, the overall process is shown in Fig-
ure 7.

Commands for

(Sequence
For i nspection)

I Figure 7: Implementation Abstracted State Machine

The implementation was validated at this point by
simply looking at the results of the simulation by

hand and recognizing that a design anomaly was or
was not reproduced in the output. This means
visually examining the output sequence labeled
“Abstracted State Vectors” to check the rollback
process functionality. Two of the three anomalies
found in the design validation were present in the
implementation. A brief summary of the results
follows.

6.3 Implementation Anomaly Validation Re-
sults

The first anomaly resulted from repetitive errors
that caused the prime and the online system to get
out of synchronization. Our design anomaly fault
scenario required a series of prime-fault-repair se-
quences each of one-second duration or less. We
did not see the first anomaly in the system. Further
investigation with system engineers revealed that
all faults take at least several minutes to repair.
Therefore, repair time was extended so that anom-
aly one would not be seen.

The second anomaly occurs when a fault occurs
less than three seconds after the sequence ends. In
this case, there is no rollback. That is, once the
sequence has been completed there is no rollback
in response to an error injected inside the three-
second-rollback window. Therefore, there is no
guarantee that all instructions at the end of the se-
quence would have been carried out by the space-
craft. Accordingly, on this basis, the last
instruction in the program should have been identi-
fied as a rollback point. Our technique demon-
strated that the second anomaly was present in the
implementation.

The third anomaly results from a fault that brings
the prime system down when its aging buffer con-
tains a mark point rollback address that has been
aged by two seconds. According to our model
checking validation, this information would not get
to the online system until the following second,
thereby causing its two deep online buffer to age
its rollback address by an additional second. Con-
sequently, its rollback address would be consistent
with a three-second delay following a mark point
when only two seconds had elapsed since the
prime string had executed its last instruction.

- 12-

Prime system failure was again caused by cold
booting the prime string at the point it had aged its
mark point by two seconds. The subsequent roll-
back in the new prime system did not match the
old prime’s rollback address. Accordingly, our
technique demonstrated that the third anomaly was
present in the implementation.

The cold boot process is equivalent to the injection
of a single fault that brings the prime system down.
This process causes the overall spacecraft control-
ler to fail to conform to requirements since control
in the new prime system rolls back to an inappro-
priate location. Therefore, our technique also dem-
onstrated that the overall system made up of prime
and backup systems was not single fault tolerant.

All of these results were taken with respect to the
spacecraft software as it existed on the High Speed
Simulator.

7 Discussion
The analysis technique used in this study is

relatively new, and was not sufficiently mature just
a few years ago to enable its use. The DRS oper-
ates as a communication system that must be ro-
bust under the incidence of arbitrary faults. The
validation of requirements for such fault tolerant
systems is particularly hard, because of the non-
determinacy introduced by the fault behavior.
Holzmann [lo] points out that even for relatively
simple communication protocols:

“It is almost impossible to manually verify
correctness requirements such as the ones
discussed, no matter how diligent or disci-
plined the designer. The behavior of even
simple protocol systems can be of a com-
plexity that no designer can be expected to
assess accurately.”
Worse still, the desired validation cannot be

established through rigorous testing of the imple-
mentation either. The complexity of the communi-
cation system, together with the non-deterministic
occurrence of faults makes exhaustive testing in-
feasible.

The use of model checkers opens up new pos-
sibilities for validating such systems. In principle,
exhaustive checking of the requirements model is
also infeasible. However, by exploiting the struc-

ture of the state space, a partial model can be ex-
tracted that is sufficient for the validation exercise.
The reduction in the size of the state space was
critical in this case study, and was achieved by di-
viding the requirements into 5 partitions and ab-
stracting away extraneous detail. The original
(reduced) estimate of the size of the model state
space was over 100 million states. Although the
estimate after simplification was between about
62,000 and 800,000 states, the actual number of
states in the model was just over 100,000 states,
allowing the validation of each of the six require-
ments in partition 1 to be completed in 30 seconds.

The complexity of the validation exercise was
also reduced by validating requirements individu-
ally. It is possible to combine requirements (and
domain properties), as described in Appendix A,
so that they can be checked in a single validation
run. However, doing so often increases the com-
plexity of the model beyond the limit of current
model checking technology. Hence, we only com-
bine requirements in this way when they are
known or suspected not to be independent.

It is important to note that with this approach,
any claims of completeness are sacrificed; we are
only performing partial validation of partial speci-
fications. Hence, the focus is not on proving cor-
rectness, but on revealing errors [13]. We have
shown in the case study that the approach is capa-
ble of finding subtle errors that are otherwise al-
most impossible to detect. If we did not find any
errors, that would not establish correctness, but it
does provide a higher level of assurance than is
otherwise possible.

8 Summary and Conclusions
We have demonstrated through a case study

how fault tolerance requirements can be validated
through non-deterministic model checking. The
system described in the case study used a mark and
rollback scheme to implement fault tolerance. The
system has to complete high priority tasks called
critical sequences efficiently and at the same time
respond to and repair faults. To meet this require-
ment, hard rollback points (markpoints) are em-
bedded in the critical sequence code so that
completed subtasks would not have to be repeated
when fault conditions force the executing critical
sequence to suspend operation to service the fault.

- 1 3 -

Faults occurring within subtasks are repaired and
rollback is then done to the start of the last uncom-
pleted subtask. A hot backup (the ‘online string’) is
operational synchronously to increase reliability
and availability.

The validation scheme described in this paper
was implemented as a Spin model with three key
components. First, the model contains an underly-
ing operating system (executive) that contains a
checkpointing scheme referred to as the mark and
rollback process, which was modeled deterministi-
cally. Second, a generalized critical sequence was
chosen to be executed by the model operating sys-
tem to make it possible for requirements and de-
sign errors to surface. Finally, a fault injection
process was used to non-deterministically inject a
single fault into the system model. The validation
system then attempted to execute the critical se-
quence and to recover from all possible injections
of a single fault into the executing critical se-
quence. In this way three anomalies were discov-
ered.

The model was reduced to a feasible size for
validation by abstracting away unnecessary detail
leaving behind a partial specification. The func-
tional rollback requirement was elaborated into 6
separate but dependent requirements. A Linear
Temporal Logic scheme was developed to validate
three pairs of coupled requirements over the dually
redundant system. This procedure allowed the
rollback requirement in the prime or control sys-
tem to be validated together with its coupled an-
cillary mirror rollback requirement in the online
(hot backup) system. In this way, the study showed
that a partial specification for a complex spacecraft
controller can be effectively validated within the
framework of the remaining requirements.

Validating all six rollback requirements in one
validation run would have added a large amount of
execution time to the validation. This is because
the resulting LTL automaton that gets coupled to
the model contributes exponentially to the size of
the model. Accordingly, by partitioning the over-
all rollback requirements into three equivalence
classes with two rollback requirements each sig-
nificantly reduced the model in size (state space)
and consequently in execution time as well. As a
byproduct, the analysis of the results was much

more straightforward since one type of rollback
could be analyzed at a time.
Having completed the work of finding the three
design errors using model checking, we then vali-
dated the software implementation for the presence
of ‘the three anomalies found in the design. Using a
spacecraft simulator running code identical to the
real spacecraft, two of the three design anomalies
were found to be present in the implementation.
The method is efficient since the design state space
search problem is generally a relatively fast proc-
ess. Whereas, the state space of a software imple-
mentation is potentially too large to search
exhaustively or even reliably partially. Having
found design errors by rapid search, efficient im-
plementation validation can be done by checking
for the presence of a small number of individual
design anomalies

We plan to extend the application of the methodol-
ogy demonstrated here to developmental efforts
over the software lifecycle using partial specifica-
tions and their associated co-evolving prototype
implementations. We are exploring two different
approaches. The first approach works by instru-
menting a partial or complete implementation in
order to detect the presence of paths through the
state space that correspond to the satisfaction of
functional requirements. The resulting log files are
then transformed into a set of traces to be executed
by a model checker to validate that the implemen-
tation preserves the key properties. The functional
requirements in the system are validated by ex-
pressing them as Linear Temporal Logic proposi-
tions that are translated into an appropriate
automata type supported by the particular model
checker in use. Then, by traversing the annotated
log files encapsulated as processes over the model,
the functional requirements are validated in the
usual way by the model checker as discussed by
Holzmann [2].

The second approach is to use the model
checker to generate runtime monitors that may be
embedded in the implementation. In this approach,
we express correctness properties as LTL, formu-
lae, and use Spin to generate a C-encoded proce-
dure from the formula, which is then included as a
run-time monitor inside the growing implementa-

- 14-

tion. The implementation is then instrumented, by
hand, to inform the monitor at the occurrence of
the events that the monitor is interested in, namely
those events that can cause a change in the truth-
value of the correctness property. The monitor
would complain if it ever saw an execution that
violated a stated correctness property.

This first of these approaches has been suc-
cessfully used on a pilot project to validate a com-
plex communications protocol called RMP [141.
Two teams consisting of an Independent Verifica-
tion and Validation (IV&V) team and a software
development team were used. Both the develop-
ment team and the IV&V teams worked from an
evolving partial specification. While the develop-
ment team was responsible for the implementation,
it was the responsibility of the IV&V team to apply
a modeling scheme to check that the evolving
specification and the implementation were consis-
tent with each other. The IV&V team then used the
model checker to validate the requirements. In this
way when errors in the implementation surfaced
they could be brought up to date with the specifi-
cation; and if the specification were in error the
implementation could be used to update the speci-
fication. Each derived or added requirement
would, of course, then be incrementally validated
and used to assist in driving the specification for-
ward and so on. By working in tandem in this way,
costly backtracking errors are prevented. The re-
sult was a saving in operational efficiency and
lower maintenance costs due to good underlying
design.
9 References
[l] W. Chan, R. J. Anderson, P. Beame, and

David Notkin, “Improving Efficiency of
Symbolic Model Checking for State-Based
System Requirements”, Proceedings of the
ACM SIGSOFT International Symposium
on Software Testing and Analysis,
(ISSTA’98), Clearwater Beach, Florida,
March 1998.

[2] G. J. Holzmann, “The Model Checker
Spin,” IEEE Transactions on Software En-
gineering, vol. 23, pp. 279-295, 1997.

[3] C. Heitmeyer and D. Mandrioli, “Formal
Methods for Real-time Computing: An
overview,’’ in Formal Methods for Real-
time Computing, C. Heitmeyer and D.

71

81

[91

Mandrioli, Eds. Chichester, UK: J. Wiley,

N. G Leveson, M. P. E. Heimdahl, H. Hil-
dreth, and J. D. Reese, “Requirements
Specification for Process Control Sys-
tems,’’ IEEE Transactions on Software En-
gineering, vol. 20, 1984.
K. L. Heninger, “Specifying Software Re-
quirements for Complex Systems: New
Techniques and Their Application,” IEEE
Transactions on Software Engineering,

S. Easterbrook and J. Callahan, “Formal
Methods for V&V of partial specifications:
An experience report,” Proceedings, Third
IEEE Symposium on Requirements Engi-
neering (RE’97), Annapolis, Maryland, 5-8
January 1997.
Z. Manna and A. Pnueli, “Tools and rules
for the practicing verifier,” Department of
Computer Science, Stanford University,
Technical Report CS-TR-90-1321, 1990.
K. L. McMillan, “Symbolic model check-
ing - an approach to the state explosion
problem,” in School of Computer Science.
Pittsburgh, PA: Carnegie Mellon Univer-
sity, 1992.
J. R. Burch, E. M. Clarke, and D. E. Long,
“Symbolic Model Checking for Sequential
Circuit Verification,” IEEE Transactions
on Computer Aided Design of Integrated
Circuits and Systems, vol. 13, pp. 401-424,
1994.
P. Ramanathan and K. G. Shin, “Use of
Common Time Base for Checkpointing
and Rollback Recovery in a Distributed
System,” IEEE Transactions on Software
Engineering, vol. 19, pp. 571-583, 1993.
G J. Holzmann, Design and Validation of
Computer Protocols: Prentice Hall, 1991.
D. Harel, “Statecharts: A Visual Formalism
for Complex Systems,” Science of Com-
puter Programming, vol. 8, pp. 23 1-74,
1987.
D. Jackson and C. A. Damon, “Elements of
Style: Analysing a software design with a
counter-example detector,” International
Symposium on Software Testing and

1996, pp. 1-32.

V O ~ . 6, pp. 2-13, 1980.

- 15 -

Analysis (ISSTA’96), San Diego, CA, 8-10
January 1996.
J. R. Callahan and T. L. Montgomery, “An
Approach to Verification and Validation of
a Reliable Multicasting Protocol,” Znter-
national Symposium on SofhYare Testing
and Analysis (ISSTA’96), San Diego, CA,
8-10 January 1996, pp. 187-194.
J. R. Buchi, “On a Decision method in re-
stricted second-order arithmetic,” Pro-
ceedings of the International Conference
on Logic Methodology and Philosophy of
Sciences, 1960, Stanford University Press,
pp. 1-11.

Reinholtz, WK and Robison, WJ., 111, “The
ZIPSIM series of high-performance, high
fidelity spacecraft simulators,” Proceed-
ings AIMUtah State University Annual
Conference on Small Satellites, Aug 29-
sept 1, 1994.

Patel, K and Reinholtz, W and Robison, W,
“High-speed simulator: A simulator for all
seasons”, Proceedings International Sym-
posium on Space Mission Operations and
Ground Data Systems (SPACEOPS96,
Munich, Germany Sept 16-20 1996; pg.
749-756

10 Appendix A: Linear Temporal Logic Back-
ground

The SpinPROMELA modeling scheme de-
rives much of its power from its ability to incorpo-
rate formal theorem proving elements into its
search schemes. Buchi [14] discovered the funda-
mental relationship between finite automata and
the second-order monadic calculi. This innovation
made it possible to incorporate Linear Temporal
Logic (LTL) assertions as components of computer
modeling schemes.

A Buchi automaton is a non-deterministic Fi-
nite State Machine (FSM) A = (X, 3, So, 3). C
is the input alphabet, S i s the set of states, So the

set of initial states, and 3 is the set of accepting
states. 3 E S x X x S i s the transition relation. If
(s, O, SI) E 3 then A can move from s to s’ upon
reading O. An input word is an infinite sequence
O= 01, 02, 03, . .: ,Oi E X, while a run, r, over o is
an infinite sequence so SI LL . . ., where
SO E SO, (S i , Oi+l, si+l) E 3, i = 0, 1, Arun, r,
is said to be accepting iff there exists a state g E 3
such that g appears infinitely often in r. The lan-
guage 4 A) is the set of all input words, O, such
that A has an accepting run over O.

Let f i be an LTL assertion corresponding to a
system requirement to be validated that generates
automaton Ai. Given n Buchi automata of the form
Ai = (Xi, 3, 3 i , Soi, 2), they are closed under the
operation of intersection. Their intersection n :=, A i

accordingly is a Buchi automaton, and it accepts
the language n :=, (A ’) . The LTL formula that gen-
erates this automaton has the form

f = X f , (1)
I =1

Equation (1) allows multiple LTL formulae to
be concatenated such that the resulting automaton
will preserve the characteristics of the language
accepted by each automaton were it to be imple-
mented in isolation. This means that the set of all
input words, O, that were recognized by each
automaton Ai in isolation will also be recognized
by the composite automaton n (A c) .

By incorporating the Finite State Machine
(FSM) representation of the formal properties to be
validated by the model, the model can be routinely
checked for the presence or the absence of the de-
sired characteristics.

The SpinPROMELA system has an LTL
translator that can produce the corresponding
Biichi automaton from an input requirement ex-
pressed as an LTL formula. The Spin modeling
system checks to see that finite state program .p
satisfies the temporal logic formula f . First, the
global state graph of P i s computed. Second, the
Buchi automaton is constructed for 11 A+ .
Third, the synchronous product P x A- , , is com-
puted. Finally, the validation run is performed on p

- 16-

x A,, For each state transition in Spin checks
to see if a corresponding transition in A,, is pos-
sible. Once one of the accepting states of A- , , has
been entered, it must be shown that that state is
reachable from itself. When this happens, A,, will
have been shown to have recognized a string (3

from the language generated from the original LTL
formula 7 , For efficiency, Spin executes the 3
steps in 1 pass. At this point a trail file can be
written showing the sequence of state transitions in
Pthat gave rise to the accepting state in A,, This
file can then be annotated and run as a test case
against the implementation.

- 17 -

